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Abstract. The kinetic theory formulation stemming from the Liouville equation which gives 
constant entropy for Hamiltonian systems is reviewed. This derivation is found to be 
inconsistent for configurations which include discontinuous changes in f,, the N-body  
distribution function. A reformulated theory is presented for such systems whose entropy 
may not be stationary. The formalism is applied to two cases. In the first of these, in a 
gedanken-like process, a gas confined to  an  isolated cylindrical box undergoes an  
infinitesimal free expansion away from a discontinuity in f,. A self-consistent estimate of 
the variation of the integral of the Gibbs microentropy over the expansion is found to give 
a n  increase in entropy. In a closely allied example a new description of entrop) change 
of an  enclosed fluid is presented according to which the flux of the Gibbs microentropy 
through an  impenetrable confining wall is interpreted as a flux of information from the 
system. Such information loss increases the missing information on the system which, 
according to Shannon’s interpretation, is equivalent to an  increase in entropy. 

1. Introduction 

Significant advances have recently been made in the theory of the irreversibility of 
deterministic classical systems (Biel and Rae 1972, Hellerman and Ioos 1983, Schuster 
1984, Zaslavsky 1983, Prigogine 1980). For the most part such studies are concerned 
with the relation between a loss of integrals of the motion and the ensuing chaotic 
behaviour. Related numerical studies chiefly consider systems with small numbers of 
degrees of freedom. Analytic theories examine these problems through perturbation 
of idealised completely integrable systems. 

In this paper the problem of irreversibility of macroscopic systems is revisited from 
the viewpoint of the Liouville equation (Kubo 1957, Uhlenbeck and Ford 1963, Koga 
1970, Kac 1958, Liboff and Heffernan 1980, Liboff 1979). For Hamiltonian systems 
this equation yields reversible macroscopic equations and constant entropy (Grad 1961, 
Ferziger and Kaper 1972, Cercignani 1969, Wehrl 1978). 

For distribution functions which suffer discontinuous changes in phase space this 
derivation is inconsistent and must be reformulated. It is argued that the reformulated 
theory allows for a change in entropy. 

Two problems are considered within this formalism. The first of these addresses 
the infinitesimal free expansion of a gas over a time interval which is short compared 
to the mean free collision time of its molecules. The expanding gas and its cylindrical 
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container are taken to comprise an isolated system. An exact solution is obtained for 
the distribution function in the expanded domain of the gas. Variation of the integral 
expression for the Gibbs entropy over the expansion interval reveals that the process 
involves an increase in entropy. This result is attributed to the initial discontinuity of 
the distribution function for the system. In a closely allied problem it was established 
by Sinai (1967) that a confined gas of rigid spherical molecules exhibits mixing flow 
(Reichl 1980). 

The second example addresses the change in entropy stemming from surface 
integrals which emerge from the integration of the entropy equation of motion over 
the accessible domain in phase space. The problem addressed is that of a gas enclosed 
at constant volume by a confining wall. If the wall is at higher temperature than the 
gas, particle-wall collisions cause information to flow from the system with an accom- 
panying increase in entropy. This interpretation of information loss stems from the 
Shannon-Brillouin entropy-information formulation according to which an entropy 
increase corresponds to an  increase in missing information on the system (Shannon 
1949, Brillouin 1956, Liboff 1974, Katz 1967, Janes 1957, Goldstein and Penrose 1981, 
Lindblad 1983). 

2. Entropic equation of motion 

2.1. Stationary entropy fo r  Hamiltonian systems 

Stemming from the Liouville equation, i t  is readily shown that the entropy of a 
Hamiltonian system is constant in time. The argument is as follows. First we recall 
the Gibbs expression for entropy: 

S = -kB dTf, In f N .  (1) i 
In this relation k B  is Boltzmann’s constant, dT is the volume element in coordinate- 
momentum phase space and  f N  is the joint probability N-body distribution function 
normalised to unity 

f w  d T =  1. ( 2 )  5 
The distribution fN satisfies the Liouville equation 

d f N / d t = a f N / a t + [ f N ,  H ] = O  (3) 

where H is the Hamiltonian of the system and [ , ] denotes Poisson brackets. To 
obtain constancy of S, one multiplies (3) through by ( 1  +In f N ) ,  obtaining 

ahN/at+[h,,  H ] = O  (4a) 

where 

hN = f v  In&. 
Substituting (4a) into (1) gives 

d S / d t  = 0 (4c) 
which establishes that S is stationary for a Hamiltonian system. We will call h N  the 
Gibbs microentropy. 
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It is important to our subsequent analysis to study briefly the relation between rates 
of change of h ,  and fN. Since fN is the probability density it follows that 

f N  3 0 .  (5) 

Consider that f N  is bounded so that 

O s J k  s M 

where M is some finite value. Introducing the scale change 

.7N = (1 /M)fN 

d T =  M dT 

and substituting into (2)  gives 

Furthermore, ( 5 a )  gives 

oslv s 1 

As no loss in generality is introduced in the scale transformation (6), it is adopted in 
the subsequent discussion. 

Dropping bars and letting z denote any phase variable, we find 

In the interval given by (8), h N  = -ihhJl and we obtain 

These relations indicate that in the more probable domain of phase space, derivatives 
of Ih,,,l and f N  are antialigned. 

2.2. Discontinuous configurations 

Consider that f N  or the first derivative in any of its variables is discontinuous across 
a surface in the accessible domain of phase space. As differentiation is not well defined 
on such surfaces, arguments leading to ( 4 c )  are inconsistent. To examine these 
situations we assume that h N  is a dynamical variable and consequently satisfies the 
equation of motion (3) ,  namely 

d h w  ah,., 
d t  a t  

- = - + [ h . N ,  H I  

This equation is appropriate to domains where h ,  is continuous. I f  f h  is continuous 
over all accessible phase space then the entropy is stationary for the system and (11) 
reverts to (4a) .  I f  there are surfaces of discontinuity of f h t  in phase space, then it is 
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conjectured that the entropy is not necessarily stationary. In this event we return to 
(1) and in the first example below apply it to calculate the change in S due to an 
infinitesimal variation about a discontinuity in &. In the second example we employ 
the integral relation obtained from (1) and (1 1):  

--= 1 d S  - 5  dT(-+[h,, ah, HI k, d t  at  

in discussing the notion of entropy change due to information flux through a confining 
wall. 

2.3. Injnitesimal expansion and accompanying entropy change 

A simple gedanken-like procedure to effect a discontinuous configuration is by instan- 
taneous removal of a workless constraint. Specifically we consider the example of an 
infinitesimal free expansion of a gas of N molecules away from a homogeneous 
equilibrium state at a given volume V at time t = O  to an infinitesimally extended 
volume at time t = 7. The initial volume V occupies a section of length L of a right 
circular cylinder with perfectly reflecting walls of finite thickness and of unit cross 
section so that we may write V = L. (We refer to this section of the cylinder as the 
‘reservoir’.) The whole cylinder is of length L +  1, (where L >> 1 )  and is of mass greatly 
in excess of the confined gas. This entire system is isolated and initially in thermal 
equilibrium at a given temperature T. It is further assumed that the system suffers 
vanishingly small change in temperature during the expansion interval and that any 
such temperature change may be neglected in the ensuing study. It is evident that at 
t = 0, , the spatial component offN is discontinuous at the site of the initial constraining 
wall, X = L (see figure 1). At the time T the coordinate space accessible to the system 
is the extended cylindrical volume L + 1. 

The time T is such that Cr<< lMFp, where C is the thermal speed and IMFp is the 
collisional mean free path of molecules in the starting configuration. This latter 
inequality ensures that a vanishingly small number of particles collide in the interval 
7. I f  further we choose 1 so that 1 >> CT then there is virtually no reflection of particles 

Figure 1. The isolated system at t = 0 is in thermal equilibrium at temperature T The 
cylindrical enclosure has unit cross sectional area. Coordinates f and j are also shown. 
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from the newly positioned confining wall. Thus we write 

L >> 1 >> cr (13a) 

cT<< l h . ~ ~ p  (136) 

mC2 = k,T (13c) 

where m is the molecular mass. As we are discussing expansion of the gas at t = O  it 
is important to note that this expansion is guaranteed due  to the isotropic quality of 
the velocity component of the distribution at t = 0. 

Further assumptions concerning this expansion are as follows. 
( i )  The gas is comprised of rigid-sphere molecules and is sufficiently rare so that 

at equilibrium the molecules are not correlated (Reichl 1980, McQuarrie 1973). Using 
(13b) this property may be  extended over the expansion interval. 

(ii) Variations in the transverse momentum component OffN and  in the transverse 
coordinate components are vanishingly small over the expansion and  may be neglected 
in the ensuing analysis. Transverse components are those normal to the direction of 
expansion. 

We wish to calculate the change in entropy in this expansion from the starting 
equation (1). Effecting a variation of (1)  over the interval T gives (working with velocity 
U in place of momentum): 

G S / k B = -  dx"  duNh, (T,xN,uN)+[  dx" dv"hN(O,xN, U"). (14) I 
Given that molecules in the gas are uncorrelated we may write 

It follows that 

dx' d p w  h,\ = N h ,  dx ,  dp ,  I 
where 

is the one-particle Gibbs microentropy function. With these relations, (14) reduces to 
the simpler form 

where 2 and V denote (dimensional) displacement and velocity parallel to the direction 
of expansion. 

The system we address exists in the half-open time interval 

O < t s T .  

Note that the system so defined is isolated and evolves according to Hamiltonian 
dynamics. Note also that the state of the system at t = T is not in thermodynamic 
equilibrium. 
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We now wish to assign, more carefully, coordinates for the expansion. Let X = 0 
denote the origin of the cylinder so that the constraint removed at time t = O  is at the 
point P = L. I t  is convenient to label points in the extended volume with j so that in 
this domain 

P = L + j  

U = l?/A c 
(see figure 1). We further introduce the non-dimensionalised x component of velocity 

where V is the actual speed and, as noted previously, C is the thermal speed. The 
distribution at t = 0 is given by the Maxwellian 

To construct the distribution at time T we divide the problem into two parts. First 
we consider f (  7) in the expansion domain 0 s j s 1. As particles d o  not collide in the 
interval T, the X coordinate of a particle moves with constant velocity. Consider an 
arbitrary point in the expansion j. At this point, at the time r, only velocities in the 
interval 

I ( U ) = [ j / ~ s f i ~ ( y + L ) / i - ]  (18) 

contribute to the distribution. Such particles carry their Maxwell distribution. This 
property follows from the following observation. First consider slow particles arriving 
at a given value of j which originate in the reservoir near the value X = L. Next 
consider faster particles which originate closer to X = 0. As the ratio of such particles 
is in a Boltzmann distribution we may conclude that the distribution is Maxwellian. 
Thus we write 

The distribution (18a) is a half-Maxwellian ( ~ 2 0 )  with the section of velocities 
U &  I(u) omitted (see figure 2) .  

Concerning the reflection of molecules from the wall at 2 = 0 of the reservoir, we 
observe the following. To account for such reflections we would replace L by 2L in 
(18). Note, however, that e x p [ - ; ( L / C ~ ) ~ ]  is vanishingly small in the present study 
(recall ( 1 3 ~ ) )  and such reflections may be neglected. 

The remaining component  off(^) in the reservoir is constructed on the basis that 
the perturbation to the initial configuration due to the expansion is infinitesimal and 
the fact that molecules from the entire reservoir contribute to the expansion. Namely, 
it is assumed that this component of the distribution remains Maxwellian in velocity 
space and is diminished infinitesimally in amplitude. Accordingly we write 
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V 

Figure 2. The attenuated half-Maxwellian in velocity space at a given value of p at time r. 

where a is a modification parameter. For self-consistency we must find that a - 1 is 
infinitesimal or, equivalently, that a vanishingly small number of particles take part in 
the expansion. The parameter a is determined by normalisation. Namely, with the 
preceding two expressions we write 

where u1 and u2 are given by 

j + L  L 1 
f iC7  E 2  

- U1 + - = u1 + - >> U I  . U_--- ' - 8C.T 

Using (13a) we write 

Thus (19) may be written 

2.3.1. Evaluation of 1 -a .  The integral on the RHS of (21) may be rewritten 

where erf U represents the error function of U. Carrying out the preceding integrations 
we find (Gradsteyn and Ryzhik 1965) 

(21b) 21 = -g l [w  e r fw+rTT-I '2exp(-w2)] , "+El[w erfw+.Ir- ' ' 'exp(-w2)]~+" 

where w is a dummy variable and 

U = l /FI  2' 1/E2. 

Using (20b)  we recall 

z >> U >> 1. 
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Isolating the w = 0 term in (21 b )  gives 

21 = T - ’ ” E ,  - &’[U erf U + r - ’ l 2  exp(-U’)] 

+ E ’ [ ( z  + U )  erf(z + U)+ F’/’ exp[-(z +U)*] - z erf z - T-”’ exp(-z’)]. 
( 2 1 d )  

For large z we may write (Abramowitz and  Stegun 1970) 

Substituting this expression into (21 d )  gives 

21 = T - 1 / 2 E l  ( 1  - exp(-u2) + exp[-(z+ U)’] - exp(-z’) 
2u2 2 ( z + u ) 2  2z2  

In the limit of large U we neglect the exponential term and obtain, finally, 
I = L r - I / 2  

E l .  

Substituting this result in ( 2 1 )  and recalling ( 2 0 b ) ,  we obtain 
1 - a  = I  27T -112 E I I / L = $ ~ T - ’ ” & ~ < <  1 .  

Returning to the normalisation statement ( 1 9 )  and multiplying through by N yields 
(22 )  similarly augmented. We may conclude that 

a N / N = l - a < <  1 ( 2 2 a )  

is the fractional incremental number of molecules which contribute to the expansion. 
As stated previously, the property ( 2 2 a )  is necessary for self-consistency of the analysis. 

2.3.2. Entropy calculation. With the distributions ( 1 8 ~ 1 ,  b )  at hand we return to ( 1 6 )  
and write for the total entropy change in the time 7 

where 

The relation ( 2 3 )  may be more concisely written 
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Further expanding the logarithmic terms gives 

-- - -?( I 1 - a )  - a In a +-- * lo' dy /"exp(-u')u2 du. 
6S 

Nk B J ; ;L  01 

Integrating the last term by parts we find 

L'/(l'dy J ; ;L  

Inserting this result into ( 2 3 6 )  gives 

dy [ U  exp(-c')]:;. 
2J;; L 

Integrating over y and passing to the small e l ,  limit, with U' >> U ' ,  gives 

lo' dy[v e x p ( - u ' ) ] : ; = i ~ ~ .  ( 2 3 d )  

Inserting this result into ( 2 3 c )  we obtain 

1 -- - - a  In a -- e? .  
SS 

N k B  4J;; 

Recalling ( 2 2 ) ,  

1 l-f-J=--- 
2J;; 

we find that the leading order of all terms in ( 2 3 e )  are O ( e 2 ) .  There results 

As stated previously, we attribute this change in entropy to the discontinuity in the 
starting value of the distribution function. To within the stated approximations, ( 2 4 )  
represents an entropy change of an isolated system and stems from the entropy integral 

It is possible to interpret the result ( 2 4 )  on the basis of the information interpretation 
(1). 

of entropy change as described below. 

2.3.3. Information interpretation ofentropy change. The Shannon- Brillouin information 
interpretation of entropy change states that 

k , '  AS = A l .  ( 2 5 )  

In this relation AI is the change in missing information accompanying the given process. 
Thus, for example, for the system at hand, the result ( 2 4 )  indicates that in the 

overall expansion the process is accompanied by a net increase of missing information 
in the system. In this context we note that the term - c 2 / 4 &  in ( 2 3 e )  may be traced 
to the attenuated half-Maxwellian ( 1 8 a ) ,  which describes particles moving in a given 
direction, and contributes to a decrease in missing information when compared to the 
original state of the system. In a similar vein we see that the positive contribution to 
( 2 4 )  stems from the - a  In a term in ( 2 3 c )  which may be identified with the canonical 
gain in missing information due to expansion. For the present example we find that 
the gain in missing information in coordinate space outweights the decrease in missing 
information in velocity space. 
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3. Information transport through a confining wall 

Let us return to the entropy equation (12). Expanding the Poisson bracket gives 

where G, is the force 

and @ is a two-particle potential. Neglecting, for the moment, the partial time derivative 
term in (19) and converting the remaining terms to surface integrals gives 

where d u  is the differential of surface in phase space. The absolute magnitudes in 
( 2 7 )  stem from the observation, that, with (8), we find 

h ,  S O  ( 2 8 )  

where the equality is satisfied at the endpoints, fh. = 0, 1. 
Hamilton’s equations 

X, = pI /  m P, = G, 

(dots denote time derivatives) permit us to interpret the surface integrals in ( 2 7 )  as a 
flux of h ,  through the respective surfaces in phase space. We wish to apply this 
interpretation to the following example. We imagine a gas at temperature TG confined 
to a fixed volume by a rigid impenetrable wall. Assuming that hh8 is zero at the bounds 
of the momentum component of phase space, then only the first surface integral in 
( 2 7 )  remains non-zero. Let Tu denote the temperature of the wall. Consider the case 
that T,> Tc,.  We may then expect that, on average, the reflected normal velocity 
components of molecules will be greater than the incident normal velocity components. 
In this event,f, ( p “ )  is biased in the direction away from the wall into the gas. From 
(10) we may infer that Ih,l is biased in the direction from the gas to the wall. Thus 
the first integral in 127) will be positive and the entropy will grow. We may interpret 
this positive surface integral as a flux of information out of the system resulting in an 
increase in missing information and an accompanying increase in entropy. 

For T w <  TCj a similar argument indicates that the first surface integral in (27) is 
negative and the entropy diminishes. We may interpret this effect as a positive flux 
of information into the system, thereby decreasing its missing information with a 
corresponding decrease in entropy. 

These findings are in accord with the first two laws of thermodynamics (Pippard 
19661, namely that, at constant volume one obtains 

T6S = 6 E  

where E is the internal energy. Thus an infinitesimal increase or decrease in internal 
energy at constant kolume is accompanied by a corresponding increase or decrease in  
entropy. 



Discontinuities in phase space 5617 

4. Conclusions 

In this analysis the equation of motion for the Gibbs microentropy was revisited and  
it was concluded that the derivation which yields constant entropy for isolated systems 
is inconsistent for systems described by a discontinuous distribution function. It was 
conjectured that for such cases entropy may not be stationary. Two problems were 
discussed. 

In the first of these, we returned to the a posteriori study of the irreversibility of 
macroscopic phenomena. Here we examined an infinitesimal expansion of a correla- 
tionless gas of rigid-sphere molecules encased in a cylindrical cavity which together 
were taken to comprise an  isolated system. Choosing the interval of expansion to be 
very small compared to the mean free collision time permitted a reasonably consistent 
kinetic model to be drawn for the process. Variation of the integral expression for the 
Gibbs entropy yielded an  increase in entropy. This result was analysed on the basis 
of the information theory interpretation of entropy change. 

In  the event that this decremental change in entropy is realised in a somewhat more 
realistic but closely allied configuration, one may conjecture that this increase would 
grow more sharply when collisions come into play at 7 2- I M F p /  C. An estimate for the 
interval of entropy to maximise is given by the Bogoliubov time, T = L /  C (Bogoliubov 
1959, Liboff 1985). 

In the second application, the entropic equation of motion (12) was applied to a 
new description of entropy change in which this change is associated with a flux of 
information through a confining wall. Thus, for example, a gas enclosed by a wall at 
a higher temperature than that of the gas was found to have positive information flux 
out of the system. This process in turn increased the missing information on the system 
with accompanying increase in entropy. 
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